
Seon Ha Email : seonha@unist.ac.kr
Security Researcher https://h0tsun.github.io

Education

• Ulsan National Institute of Science and Technology Ulsan, Korea
PH.D of Science in Computer Science; Mar. 2021 –

• Ulsan National Institute of Science and Technology Ulsan, Korea
Master of Science in Computer Science; Mar. 2019 – Feb. 2021

• University of Science and Technology Daejeon, Korea
Master of Information Security Engineering; Mar. 2018 – Aug. 2018

• Dalian Ocean University Dalian, China
Exchange Student; Aug. 2016 – Feb. 2017

• Pukyong National University Busan, Korea
Bachelor of Engineering in information and communication engineering; Mar. 2013 – Feb. 2018

Research Interest

• Building secure software system: I am particularly interested in secure KVS(Key-value store) system. I am
interested in improving the security of the system.

• Software compartmentalization: Software compartmentalization is an approach that reduces the impact of one
vulnerability by splitting software into pieces.

• Hardware extension for security: Hardware extensions for secure system.

Experience

• ETRI(Electronics and Telecommunications Research Institute) Daejeon, Korea
Software Engineer Jul. 2017 - Oct. 2017

◦ Indoor Localization: I improved the accuracy of beacon recognition indoors.

Publications

• Protecting Kernel Code integrity with PMP on RISC-V WISA 2023
Seon Ha and Hyungon Moon

◦ Kernel code integrity: Kernel code integrity is the foundation of the security of the entire system. Attackers are
motivated to compromise the kernel code integrity because it gives them the highest possible privilege on the
system, allowing them to take the full control of it. They can perform the attack by either modifying the kernel
code directly or tricking the kernel to execute from data pages. Existing kernels and processors are working
together to defeat this threat, but their reliance on the page table leaves the attackers leeway to bypass the
protection. Existing solutions aiming to tackle this limitation, the reliance on the page table integrity, are either too
expensive or require custom hardware. In this paper, we present a software-only design of a kernel code integrity
protection mechanism for RISC-V-based systems that implement the Physical Memory Protection (PMP). We show
that, despite the lack of direct support for kernel code protection, the kernel and the machine mode firmware can
work together to leverage the PMP to defeat the advanced kernel code integrity-compromising attacks by
dynamically switching the memory protection policies on user-kernel switches. The performance estimation using
our prototype shows that the proposed mechanisms incur moderate (¡24%) overhead on system call latencies. The
security evaluation using synthetic advanced attacks also demonstrates that the proposed mechanism can effectively
prevent the page table-corrupting kernel code injection attacks.

• Kernel Code Integrity Protection at the Physical Address Level on RISC-V ITEE Aceess
Seon Ha, Minsang Yu, Hyungon Moon, Jongeun Lee

◦ Kernel code integrity: An operating system kernel has the highest privilege in most computer systems, making
its code integrity critical to the entire system’s security. Failure to protect the kernel code integrity allows an
attacker to modify the kernel code pages directly or trick the kernel into executing instructions stored outside the
kernel code pages. Existing prevention mechanisms rely on the memory management unit in which certain memory
pages are marked as not-executable in supervisor mode to prevent such attacks. However, an attacker can bypass
these existing mechanisms by directly manipulating the page table contents to mark the memory pages with

https://h0tsun.github.io
mailto:seonha@unist.ac.kr
https://h0tsun.github.io


malicious code as supervisor-executable. This paper shows that a small architectural extension enables a physical
address-level mechanism to stop this threat without relying on page table integrity. PrivLock lets, at boot time, the
kernel specifies the physical address ranges containing its code. At run time, PrivLock ensures that the content
within the range is not manipulated and that only the instructions from those pages are executed while the
processor runs in supervisor mode. Despite this protection, the kernel can still create new code pages (e.g., for
loadable kernel modules) and make them executable with the help of PrivLock’s secure loader. The experimental
results show that PrivLock incurs low performance (¡0.5%), area (0.14–0.3%), and energy/power (0.053–2%)
overhead.

Awards

• Korea information security BOB Idea cup
KETRI(Korea Information Technology Research Institute), Korea Feb. 2015
Netizen special prize: Create excellent information protection ideas and raise public awareness of security.

Activities

• CERT-IS Pukyong National University Security Club
Member Mar. 2014 – Feb. 2018

• Microsoft Student Partners 8th Microsoft Korea
Member Aug. 2014 – Aug. 2015

Programming Skills

• Languages: Scala, C++, C, Python, CHISEL/FIRRTL, verilog


	Education
	Research Interest
	Experience
	Publications
	Awards
	Activities
	Programming Skills

